Dissertation Rücker

Literaturverzeichnis


  1. Allen, J.B. (1985). Cochlear modeling. IEEE ASSP Magazine, 1: 3-29.
  2. Aures, W. (1985). Der sensorische Wohlklang als Funktion psychoakustischer Empfindungsgrößen. Acustica, 58: 282-290.
  3. Azizi, S.A. (1990). Entwurf und Realisierung digitaler Filter. Oldenbourg, München, 5. Aufl.
  4. Baumann, U. (1994). Segregation and integration of acoustical objects in automatic analysis of music. In: Deliège, I., Hrsg., Proc. of the 3rd Intern. Conf. for Music Perception and Cognition, Liège, Seiten 282-285. ESCOM, 1994.
  5. Baumann, U. (1995). Ein Verfahren zur Erkennung und Trennung multipler akustischer Objekte. Herbert Utz Verlag, München.
  6. Beckenbauer, T. (1990). Spektrale Inhibition als Mittel zur Sprachverarbeitung. Dissertation, Technische Universität München.
  7. von Békésy, G. (1967). Sensory Inhibition. Princeton University Press, Princeton, N.J.
  8. de Boer, E., Kuyper, P. (1968). Triggered correlation. IEEE Trans. on Biomedical Engineering, 15(3): 169-179.
  9. Bregman, A.S. (1990). Auditory Scene Analysis. MIT, Cambridge, Massachusetts.
  10. Brigham, E.O. (1992). FFT Schnelle Fourier-Transformation. Oldenbourg, München, 5. Aufl.
  11. Brown, G.J. (1992). Computational Auditory Scene Analysis: A Representational Approach. Ph.d. thesis, University of Sheffield.
  12. Burns, E.M., Viemeister, N.F. (1976). Nonspectral pitch. J. Acoust. Soc. Am., 60: 863-869.
  13. Cardozo, B.L. (1967). Ohm's law and masking. Annual Progress Report 2, IPO Institute for Perception Research, Eindhoven.
  14. Carlyon, R.P., Shackleton, T.M. (1994). Comparing the fundamental frequencies of resolved and unresolved harmonics: Evidence for two pitch mechanisms. J. Acoust. Soc. Am., 95(6): 3541-3554.
  15. Carterette, E.C., Friedman, M.P., Lovell, J.D. (1969). Mach bands in hearing. J. Acoust. Soc. Am., 45(4): 986-998.
  16. de Cheveigné, A. (1998). Cancellation model of pitch perception. J. Acoust. Soc. Am., 103(3): 1261-1271.
  17. Ciocca, V., Darwin, C.J. (1999). The integration of nonsimultaneous frequency components into a single virtual pitch. J. Acoust. Soc. Am., 105(4): 2421-2430.
  18. Cohen, L. (1995). Time-Frequency Analysis. Prentice-Hall, Englewood Cliffs, New Jersey.
  19. Cohen, M.A., Grossberg, S., Wyse, L.L. (1995). A spectral network model of pitch perception. J. Acoust. Soc. Am., 98(2): 862-879.
  20. Cooke, M.P. (1993). Modelling Auditory Processing and Organisation. Cambridge University Press, Cambridge.
  21. Cooke, M.P. (1986). A computer model of peripheral auditory processing incorporating phase-locking, suppression and adaptation effects. Speech Communication, 5: 261-281.
  22. Cooke, M., Beet, S., Crawford, M. (Eds.). (1993). Visual Representations of Speech Signals. Wiley, Chichester.
  23. Duifhuis, H., Willems, L.F., Sluyter, R.J. (1982). Measurement of pitch in speech. An implementation of Goldstein's theory of pitch perception. J. Acoust. Soc. Am., 71(6): 1568-1580.
  24. Ellis, D. P.W. (1992). A Perceptual Representation of Audio. Masterthesis, M.I.T., Boston, Mass.
  25. Ellis, D.P.W. (1996). Prediction-driven Computational Auditory Scene Analysis. Ph.d. thesis, M.I.T., Boston, Mass.
  26. Ellis, D.P.W., Rosenthal, D. (1995). Mid-level representations for computational auditory scene analysis. In: Proc. Intern. Conf. on Art. Int., Montreal 1995.
  27. Fano, R.M. (1950). Short-time autocorrelation functions and power spectra. J. Acoust. Soc. Am., 22(5): 546-551.
  28. Fant, G. (1960). Acoustic theory of speech production. Mouton, The Hague.
  29. Fastl, H. (1971). Über Tonhöhenempfindungen bei Rauschen. Acustica, 25: 350-354.
  30. Fastl, H. (1976). Temporal masking effects I: Broadband noise masker. Acustica, 35(5): 287-302.
  31. Fastl, H. (1989). Pitch strength of pure tones. In: 13th Intern. Conf. on Acoustics, Belgrade, Yugoslavia 1989, Seiten 11-14.
  32. Fastl, H., Hesse, A. (1984). Frequency discrimination for pure tones at short durations. Acustica, 56: 41-47.
  33. Fastl, H., Stoll, G. (1979). Scaling of pitch strength. Hearing Research, 1: 293-301.
  34. Feth, L.L., O'Malley, H., Ramsey, J. (1982). Pitch of unresolved two-component complex tones. J. Acoust. Soc. Am., 72: 1403-1412.
  35. Flanagan, J.L. (1972). Speech Analysis, Synthesis and Perception. Springer, Berlin, Heidelberg, New York, 2nd Edition.
  36. Fourcin, A.J. (1965). The pitch of noise with periodic spectral peaks. In: Proc. 5th Intern. Congr. Acoust., Liège 1965.
  37. Furui, S. (1986). On the role of spectral transition for speech perception. J. Acoust. Soc. Am., 80(4): 1016-1025.
  38. Gambardella, G. (1971). A contribution to the theory of short-time spectral analysis with nonuniform bandwith filters. IEEE Trans. on Circuit Theory, 18(4): 455-460.
  39. Gelfand, S.A. (1990). Hearing. Marcel Dekker, Inc., New York/Basel, 2nd Edition.
  40. Glasberg, B.R., Moore, B.C.J. (1990). Deviation of auditory filter shapes from notched-noise data. Hearing Research, 47: 103-138.
  41. Gold, B., Rabiner, L. (1969). Parallel processing techniques for estimating pitch periods of speech in the time domain. J. Acoust. Soc. Am., 46: 442-448.
  42. Goldstein, J.L. (1973). An optimum processor theory for the central formation of the pitch of complex tones. J. Acoust. Soc. Am., 54(6): 1496-1516.
  43. Hall, J.W., Peters, R.W. (1981). Pitch for nonsimultaneous successive harmonics in quiet and noise. J. Acoust. Soc. Am., 69(2): 509-513.
  44. Hartmann, W.M. (1988). Pitch perception and the segregation and integration of auditory entities. In: Auditory Function, G.M. Edelmann, W.E. Gall und M.W. Cowan (Eds.), Kapitel 21, Seiten 623-645. John Wiley & Sons, New York.
  45. Hauske, G. (1994). Systemtheorie der visuellen Wahrnehmung. B.G. Teubner, Stuttgart.
  46. Heinbach, W. (1988). Aurally adequate signal representation: The part-tone-time-pattern. Acustica, 67: 113-121.
  47. Heinbach, W. (1988). Gehörgerechte Repräsentation von Audiosignalen durch das Teiltonzeitmuster. Dissertation, Technische Universität München.
  48. Heldmann, K. (1994). Wahrnehmung, gehörgerechte Analyse und Merkmalsextraktion technischer Schalle. Fortschr.-Ber. VDI Reihe 17, Nr. 109, VDI-Verlag, Düsseldorf.
  49. von Helmholtz, H. (1968). Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik. Ohm, Hildesheim, 7. Aufl.
  50. Hermes, D.J. (1988). Measurement of pitch by subharmonic summation. J. Acoust. Soc. Am., 83(1): 257-264.
  51. Hess, W. (1983). Pitch Determination of Speech Signals. Springer, Berlin, Heidelberg, New York, Tokyo, 1st Edition.
  52. Höge, H. (1984). New filter bank design for a channel vocoder based on the perception properties of the human ear. Siemens Forsch.- u. Entwickl.-Ber., 13(2): 68-73.
  53. Horn, T. (1998). Auditive Spektrogramme - Interpretation, Resynthese, Reduktion. Manuskript, Fachgebiet Akustische Kommunikation, Technische Universität München.
  54. Horn, T. (1998). Image processing of speech with auditory magnitude spectrograms. Acustica, 84: 175-177.
  55. Houtgast, T. (1972). Psychophysical evidence for lateral inhibition in hearing. J. Acoust. Soc. Am., 51(6): 1885-1894.
  56. Houtgast, T. (1974). Lateral suppression in hearing. TNO Report, Institute for Human Factors, Soesterberg.
  57. Houtgast, T. (1976). Subharmonic pitches of a pure tone at low S/N ratio. J. Acoust. Soc. Am., 60(2): 405-409.
  58. Houtsma, A.J.M., Smurzynski, J. (1990). Pitch identification and discrimination for complex tones with many harmonics. J. Acoust. Soc. Am., 87(1): 304-310.
  59. Humes, L.E., Jesteadt, W. (1989). Models of the additivity of masking. J. Acoust. Soc. Am., 85(3): 1285-1294.
  60. Irino, T., Patterson, R.D. (1996). Temporal asymmetry in the auditory system. J. Acoust. Soc. Am., 99(4): 2316-2331.
  61. Klatt, D. (1982). Speech processing strategies based on auditory models. In: Carlson, R., Granström, B., Hrsg., The Representation of Speech in the Peripheral Auditory System, Seiten 181-196. Elsevier Biomedical Press.
  62. Koffka, K. (1935). Principles of Gestalt Psychology. Harcourt, Brace and World, New York.
  63. Kohlrausch, A., Houtsma, A.J.M. (1992). Pitch related to spectral edges of broadband signals. Phil. Trans. R. Soc. Lond., 336: 375-382.
  64. Langner, G. (1992). Periodicity coding in the auditory system. Hearing Research, 60: 115-142.
  65. Lea, A.P., Summerfield, Q. (1994). Minimal spectral contrast of formant peaks for vowel recognition as a function of spectral slope. Perception & Psychophysics, 56(4): 379-391.
  66. Licklider, J.C.R. (1951). A duplex theory of pitch perception. Experientia, 7: 128-133.
  67. Loughlin, P.J., Atlas, L.E., Pitton, J.W. (1993). Advanced time-frequency representations for speech processing. In: Cooke, M., Beet, S., Crawford, M., Hrsg., Visual Representations of Speech Signals, Seiten 28-53. Wiley, Chichester.
  68. McCabe, S.L., Denham, M.J. (1997). A model of auditory streaming. J. Acoust. Soc. Am., 101(3): 1611-1621.
  69. Meddis, R., Hewitt, M.J. (1991). Virtual pitch and phase sensitivity of a computer model of the auditory periphery. I: Pitch identification. J. Acoust. Soc. Am., 89(6): 2866-2882.
  70. Meddis, R., Hewitt, M.J. (1991). Virtual pitch and phase sensitivity of a computer model of the auditory periphery. II: Phase sensitivity. J. Acoust. Soc. Am., 89(6): 2883-2894.
  71. Meddis, R., O'Mard, L. (1997). A unitary model of pitch perception. J. Acoust. Soc. Am., 102(3): 1811-1820.
  72. Miller, G.A., Taylor, W.J. (1948). The perception of repeated bursts of noise. J. Acoust. Soc. Am., 20: 171-182.
  73. Moore, B.C.J., Glasberg, B.R., Peters, R.W. (1985). Relative dominance of individual partials in determining the pitch of complex tones. J. Acoust. Soc. Am., 77(5): 1853-1860.
  74. Moore, B.C.J. (1993). Frequency analysis and pitch perception. In: Yost, W.A., Popper, A.N., Fay, R.R., Hrsg., Human Psychophysics, Seiten 56-115. Springer, New York/Berlin.
  75. Moore, B.C.J. (1997). An Introduction to the Psychology of Hearing. Academic Press, London/San Diego, 4. Edition.
  76. Mummert, M. (1990). Trennung von tonalen und geräuschhaften Anteilen im Sprachsignal. In: Fortschritte der Akustik - DAGA '90, Seiten 1047-1050, Bad Honnef. DPG-GmbH.
  77. Mummert, M. (1998). Sprachcodierung durch Konturierung eines gehörangepaßten Spektrogramms und ihre Anwendung zur Datenreduktion. Fortschr.-Ber. Reihe 10, Nr. 522. VDI-Verlag, Düsseldorf.
  78. Ohm, G.S. (1843). Über die Definition des Tones, nebst daran geknüpfter Theorie der Sirene und ähnlicher tonbildender Vorrichtungen. Ann. Phys., 59: 513-565.
  79. Oppenheim, A.V., Schafer, R.W. (1995). Zeitdiskrete Signalverarbeitung. Oldenbourg, München, 2. Aufl.
  80. Owens, F.J., Murphy, M.S. (1988). A short-time fourier transform. Signal Processing, Elsevier, 14(1): 3-10.
  81. Owens, F.J., Murphy, M.S. (1989). Non-uniform RFT filterbank design for speech processing. In: Eurospeech 89, Seiten 605-608, 1989.
  82. Pantev, C., Elbert, T., Ross, B., Eulitz, C., Terhardt, E. (1996). Binaural fusion and the representation of virtual pitch in the human auditory cortex. Hearing Research, 100: 164-170.
  83. Patterson, R.D., Holdsworth, J., Allerhand, M. (1992). Auditory models as preprocessors for speech recognition. In: Schouten, M. E. H., Hrsg., The Auditory Processing of Speech: From Sounds to Words, Seiten 67-83. Mouton de Gruyter, Berlin.
  84. Patterson, R.D., Moore, B.C.J. (1986). Auditory filters and excitation patterns as representations of frequency resolution. In: Moore, B.C.J., Hrsg., Frequency Selectivity in Hearing, Seiten 123-177. Academic Press, London.
  85. Patterson, R.D., Holdsworth, J., Nimmo-Smith, I., Rice, P. (1988). SVOS Final Report: The Auditory Filterbank. APU report 2341, MRC Applied Psychology Unit, Cambridge, UK.
  86. Patterson, R.D., Robinson, K., Holdsworth, J., McKeown, D., Zhang, C., Allerhand, M. (1992). Complex sounds and auditory images. In: Cazals, Y., Demany, L., Horner, K., Hrsg., Auditory Physiology and Perception, Seiten 429-443. Pergamon, Oxford.
  87. Pfeiffer, R.R. (1970). A model for two-tone inhibition of single cochlear-nerve fibers. J. Acoust. Soc. Am., 48(6): 1373-1378.
  88. Plomp, R. (1964). The ear as frequency analyzer. J. Acoust. Soc. Am., 36(9): 1628-1636.
  89. Plomp, R. (1967). Pitch of complex tones. J. Acoust. Soc. Am., 41: 1526-1533.
  90. Plomp, R. (1976). Aspects of Tone Sensation. Academic Press, London.
  91. Portnoff, M.R. (1980). Time-frequency representation of digital signals and systems based on short-time fourier analysis. IEEE Trans. Acoust., Speech, Signal Processing, 28(1): 55-69.
  92. Rioul, O., Vetterli, M. (1991). Wavelets and signal processing. IEEE Signal Processing Magazine, 10: 14-37.
  93. Ritsma, R.J. (1967). Frequencies dominant in the perception of the pitch of complex sounds. J. Acoust. Soc. Am., 42: 191-198.
  94. von Rücker, C. (1997). Berechnung von Erregungsverteilungen aus FTT-Spektren. In: Fortschritte der Akustik - DAGA '97, Seiten 484-485, Oldenburg. DEGA.
  95. von Rücker, C. (1998). Spektraltonhöhenanalyse unter Berücksichtigung von Akzentuierung. In: Fortschritte der Akustik - DAGA '98, Seiten 498-499, Oldenburg. DEGA.
  96. von Rücker, C. (in press). The role of accentuation of spectral pitch in auditory information processing. In: Manley, G.A., Hrsg., Auditory Worlds: Sensory Analysis and Perception in Animals and Men. Wiley-VCH, Weinheim.
  97. Sachs, M.B., Kiang, N.Y.S. (1968). Two-tone inhibition in auditory-nerve fibers. J. Acoust. Soc. Am., 43(5): 1120-1128.
  98. Scherer, A. (1988). Erklärung der spektralen Verdeckung mit Hilfe von Mithörschwellen- und Suppressionsmustern. Acustica, 67: 1-18.
  99. Schlang, M. (1989). An auditory based approach for echo compensation with modulation filtering. In: Eurospeech 89, Seiten 661-664, Paris.
  100. Schlang, M., Mummert, M. (1990). Die Bedeutung der Fensterfunktion für die Fourier-t-Transformation als gehörgerechte Spektralanalyse. In: Fortschritte der Akustik - DAGA '90, Seiten 1043-1046, Bad Honnef. DPG-GmbH.
  101. Schmid, W. (1997). Zur Ausgeprägtheit der Tonhöhe gedrosselter und amplitudenmodulierter Sinustöne. In: Fortschritte der Akustik - DAGA '97, Seiten 355-356, Oldenburg. DEGA.
  102. Schmid, W. (1998). Die akzentuierende Wirkung von Zeigertönen auf Spektraltonhöhen komplexer Töne. In: Fortschritte der Akustik - DAGA '98, Seiten 468-469, Oldenburg. DEGA.
  103. Schmid, W. (1998). Zur Ausgeprägtheit der Tonhöhe von Rauschen mit zeitvarianter Bandbegrenzung. In: Fortschritte der Akustik - DAGA '98, Seiten 470-471, Oldenburg. DEGA.
  104. Schmid, W., Chalupper, J. (1998). Spektraltonhöhen komplexer Töne: Psychoakustische Experimente und Berechnung der Ausgeprägtheit der Tonhöhe. In: Fortschritte der Akustik - DAGA '98, Seiten 480-481, Oldenburg. DEGA.
  105. Schorer, E. (1989). Vergleich eben erkennbarer Unterschiede und Variationen der Frequenz und Amplitude von Schallen. Acustica, 68: 183-199.
  106. Schouten, J.F. (1940). The residue, a new component in subjective sound analysis. Proc. Koninkl. Ned. Akad. Wetenschap., 43: 356-365.
  107. Schouten, J.F. (1940). The perception of pitch. Techn. Rev. 5, Philips.
  108. Schouten, J.F., Ritsma, R.J., Cardozo, B.L. (1962). Pitch of the residue. J. Acoust. Soc. Am., 34: 1418-1424.
  109. Schroeder, M.R., Atal, B.S. (1962). Generalized short-time power spectra and autocorrelation functions. J. Acoust. Soc. Am., 34(11): 1679-1683.
  110. Seebeck, A. (1841). Beobachtungen über einige Bedingungen der Entstehung von Tönen. Ann. Phys., 53: 417-436.
  111. Sek, A., Moore, B.C.J. (1995). Frequency discrimination as a function of frequency, measured in several ways. J. Acoust. Soc. Am., 97: 2479-2486.
  112. Seneff, S. (1984). Pitch and spectral estimation of speech based on auditory synchrony model. Working Papers Vol. IV, Res. Lab. of Electr., Speech Communication Group, MIT, Boston, Mass.
  113. Shackleton, T.M., Carlyon, R.P. (1994). The role of resolved and unresolved harmonics in pitch perception and frequency modulation detection. J. Acoust. Soc. Am., 95(6): 3529-3540.
  114. Shamma, S.A. (1985). Speech processing in the auditory system II: Lateral inhibition and the processing of speech evoked activity in the auditory nerve. J. Acoust. Soc. Am., 78: 1622-1632.
  115. Slaney, M., Lyon, R.F. (1990). A perceptual pitch detector. In: Intern. Conf. Acoust., Speech, Signal Processing, 1990, Seiten 357-360.
  116. Small, A.M. (1975). Mach bands in auditory masking revisited. J. Acoust. Soc. Am., 57(1): 251-252.
  117. Small, A.M., Daniloff, R.G. (1967). Pitch of noise bands. J. Acoust. Soc. Am., 41: 506-512.
  118. Srulowicz, P., Goldstein, J.L. (1983). A central spectrum model: a synthesis of auditory-nerve timing and place cues in monaural communication of frequency spectrum. J. Acoust. Soc. Am., 73(4): 1266-1276.
  119. Stoll, G. (1982). Spectral-pitch pattern: A concept representing the tonal features of sounds. In: Clynes, M., Hrsg., Music, Mind and Brain, The Neuropsychology of Music, Seiten 271-278. Plenum Press, New York.
  120. Summerfield, Q., Haggard, M., Foster, J., Gray, S. (1984). Perceiving vowels from uniform spectra: Phonetic exploration of an auditory aftereffect. Perception & Psychophysics, 35(3): 203-213.
  121. Terhardt, E. (1968). Über die durch amplitudenmodulierte Sinustöne hervorgerufene Hörempfindung. Acustica, 20: 210-214.
  122. Terhardt, E. (1972). Zur Tonhöhenwahrnehmung von Klängen: I. Psychoakustische Grundlagen. Acustica, 26: 173-186.
  123. Terhardt, E. (1972). Zur Tonhöhenwahrnehmung von Klängen: II. Ein Funktionsschema. Acustica, 26: 187-199.
  124. Terhardt, E. (1979). Calculating virtual pitch. Hearing Research, 1: 155-182.
  125. Terhardt, E. (1985). Fourier transformation of time signals: Conceptual revision. Acustica, 57: 242-256.
  126. Terhardt, E. (1987). Gestalt principles and music perception. In: Yost, W.A., Watson, C.S., Hrsg., Auditory processing of complex sounds, Seiten 157-166. Lawrence Erlbaum Associates, Hillsdale, N.J.
  127. Terhardt, E. (1987). Psychophysics of audio signal processing and the role of pitch in speech. In: Schouten, M.E.H., Hrsg., The Psychophysics of Speech Perception, Seiten 271-283. M. Nijhoff Publ., Dordrecht.
  128. Terhardt, E. (1989). Warum hören wir Sinustöne? Naturwissenschaften, 76: 496-504.
  129. Terhardt, E. (1992). From speech to language: On auditory information processing. In: Schouten, M.E.H., Hrsg., The Auditory Processing of Speech: From Sounds to Words, Seiten 363-380. Mouton de Gruyter, Berlin.
  130. Terhardt, E. (1992). The SPINC function for scaling of frequency in auditory models. Acustica, 77: 40-42.
  131. Terhardt, E. (1997). Lineares Modell der peripheren Schallübertragung im Gehör. In: Fortschritte der Akustik - DAGA '97, Seiten 367-368, Oldenburg. DEGA.
  132. Terhardt, E. (1998). Akustische Kommunikation. Springer, Berlin/Heidelberg, 1. Aufl.
  133. Terhardt, E., Aures, W. (1984). Wahrnehmbarkeit der periodischen Wiederholung von Rauschsignalen. In: Fortschritte der Akustik - DAGA '84, Seiten 769-772, Bad Honnef. DPG-GmbH.
  134. Terhardt, E., Stoll, G., Schermbach, R., Parncutt, R. (1986). Tonhöhenmehrdeutigkeit, Tonverwandtschaft und Identifikation von Sukzessivintervallen. Acustica, 61: 57-66.
  135. Terhardt, E., Stoll, G., Seewann, M. (1982). Algorithm for extraction of pitch and pitch salience from complex tonal signals. J. Acoust. Soc. Am., 71(3): 679-688.
  136. Terhardt, E., Stoll, G., Seewann, M. (1982). Pitch of complex signals according to virtual-pitch theory: Tests, examples and predictions. J. Acoust. Soc. Am., 71(3): 671-678.
  137. Theile, G., Link, M., Stoll, G. (1987). Low bit rate coding of high quality audio signals. AES, Preprint 2432.
  138. Unkrig, A., Baumann, U. (1993). Spektralanalyse und Frequenzkonturierung durch Filter mit asymmetrischen Flanken. In: Fortschritte der Akustik - DAGA '93, Seiten 876-879, Bad Honnef. DPG-GmbH.
  139. Valenzuela, M.N. (1997). Extraktion gehörrelevanter Schallsignalparameter aus Flügelklängen. In: Fortschritte der Akustik - DAGA '97, Seiten 321-322, Oldenburg. DEGA.
  140. Valenzuela, M.N. (1998). Untersuchungen und Berechnungsverfahren zur Klangqualität von Klaviertönen. Herbert Utz Verlag, München.
  141. Viemeister, N. (1980). Adaptation of masking. In: van den Brink, G., Bilsen, F.A., Hrsg., Psychophysical, physiological and behavioral studies in hearing, Seiten 190-199. Delft University Press.
  142. Wartini, S. (1996). Zur Rolle der Spektraltonhöhen und ihrer Akzentuierung bei der Wahrnehmung von Sprache. Fortschr.-Ber. Reihe 10, Nr.  398. VDI-Verlag, Düsseldorf.
  143. Westra (1992). Audiometric Disc Nr. 11, Zahlen und Wörtertest nach DIN 45621 mit Störgeräusch nach Prof. Dr.-Ing. H. Fastl. Westra Electronic GmbH, 86637 Wertingen.
  144. Wightman, F.L. (1973). The pattern-transformation model of pitch. J. Acoust. Soc. Am., 54(2): 407-416.
  145. Wilson, J.P. (1970). An auditory after-image. In: Plomp, R., Smoorenburg, G. F., Hrsg., Frequency analysis and periodicity detectection in hearing, Seiten 303-318. A.W. Sijthoff.
  146. Wright, B.A., McFadden, D., Champlin, C.A. (1993). Adaptation of suppression as an explanation of enhancement effects. J. Acoust. Soc. Am., 94(1): 72-82.
  147. Yost, W.A. (1996). The pitch of iterated rippled noise. J. Acoust. Soc. Am., 100: 511-518.
  148. Yost, W.A., Hill, R. (1979). Models of the pitch and pitch strength of ripple noise. J. Acoust. Soc. Am., 66(2): 400-410.
  149. Zwicker, E. (1961). Subdivision of the audible frequency range into critical bands (Frequenzgruppen). J. Acoust. Soc. Am., 33(3): 248.
  150. Zwicker, E. (1964). "Negative afterimage" in hearing. J. Acoust. Soc. Am., 36(12): 2413-2415.
  151. Zwicker, E. (1970). Masking and psychological excitation as consequences of the ear's frequency analysis. In: Plomp, R., Smoorenburg, G.F., Hrsg., Frequency Analysis and Periodicity Detection in Hearing, Seiten 376-396. A.W. Sijthoff, Leiden.
  152. Zwicker, E. (1982). Psychoakustik. Springer, Berlin.
  153. Zwicker, E. (1984). Dependence of post-masking on masker duration and its relation to temporal effects in loudness. J. Acoust. Soc. Am., 75(1): 219-223.
  154. Zwicker, E., Fastl, H. (1999). Psychoacoustics: Facts and Models. Springer, Berlin/Heidelberg, 2nd Edition.
  155. Zwicker, E., Feldtkeller, R. (1967). Das Ohr als Nachrichtenempfänger. Hirzel, Stuttgart, 2. Aufl.
  156. Zwicker, E., Herla, S. (1975). Über die Addition von Verdeckungseffekten. Acustica, 34(2): 89-97.
  157. Zwicker, E., Terhardt, E. (1980). Analytical expressions for critical-band rate and critical bandwidth as a function of frequency. J. Acoust. Soc. Am., 68: 1523-1525.

Zurück zur Dissertation Rücker